首页> 外文OA文献 >A Unified Approach to Integration and Optimization of Parametric Ordinary Differential Equations
【2h】

A Unified Approach to Integration and Optimization of Parametric Ordinary Differential Equations

机译:参数化集成与优化的统一方法   常微分方程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Parameter estimation in ordinary differential equations, although applied andrefined in various fields of the quantitative sciences, is still confrontedwith a variety of difficulties. One major challenge is finding the globaloptimum of a log-likelihood function that has several local optima, e.g. inoscillatory systems. In this publication, we introduce a formulation based oncontinuation of the log-likelihood function that allows to restate theparameter estimation problem as a boundary value problem. By construction, theordinary differential equations are solved and the parameters are estimatedboth in one step. The formulation as a boundary value problem enables anoptimal transfer of information given by the measurement time courses to thesolution of the estimation problem, thus favoring convergence to the globaloptimum. This is demonstrated explicitly for the fully as well as the partiallyobserved Lotka-Volterra system.
机译:尽管常微分方程中的参数估计已在定量科学的各个领域中得到应用和完善,但仍然面临各种困难。一个主要的挑战是找到具有几个局部最优值的对数似然函数的全局最优值。振荡系统。在本出版物中,我们介绍了一种基于对数似然函数连续性的公式,该公式允许将参数估计问题重新陈述为边值问题。通过构造,求解一阶常微分方程,并一步估计参数。公式化为边界值问题可以使测量时间过程给出的信息最优地转移到估计问题的解决方案中,从而有利于收敛到全局最优值。对于全部和部分观测到的Lotka-Volterra系统,这已得到明确证明。

著录项

  • 作者

    Kaschek, Daniel; Timmer, Jens;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号